5,353 research outputs found

    Near-arcsecond resolution observations of the hot corino of the solar type protostar IRAS 16293-2422

    Get PDF
    Complex organic molecules have previously been discovered in solar type protostars, raising the questions of where and how they form in the envelope. Possible formation mechanisms include grain mantle evaporation, interaction of the outflow with its surroundings or the impact of UV/X-rays inside the cavities. In this Letter we present the first interferometric observations of two complex molecules, CH3CN and HCOOCH3, towards the solar type protostar IRAS16293-2422. The images show that the emission originates from two compact regions centered on the two components of the binary system. We discuss how these results favor the grain mantle evaporation scenario and we investigate the implications of these observations for the chemical composition and physical and dynamical state of the two components.Comment: 5 pages (apjemulate), 2 figures; accepted by ApJ

    The census of complex organic molecules in the solar type protostar IRAS16293-2422

    Full text link
    Complex Organic Molecules (COMs) are considered crucial molecules, since they are connected with organic chemistry, at the basis of the terrestrial life. More pragmatically, they are molecules in principle difficult to synthetize in the harsh interstellar environments and, therefore, a crucial test for astrochemical models. Current models assume that several COMs are synthesised on the lukewarm grain surfaces (≳\gtrsim30-40 K), and released in the gas phase at dust temperatures ≳\gtrsim100 K. However, recent detections of COMs in ≲\lesssim20 K gas demonstrate that we still need important pieces to complete the puzzle of the COMs formation. We present here a complete census of the oxygen and nitrogen bearing COMs, previously detected in different ISM regions, towards the solar type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Six COMs, out of the 29 searched for, were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. The multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲\lesssim30 K) envelope of IRAS16293-2422, with abundances 0.03-2 ×10−10\times 10^{-10}. Our data do not allow to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on the lukewarm grain surfaces. Finally, when considering also other ISM sources, we find a strong correlation over five orders of magnitude, between the methyl formate and dimethyl ether and methyl formate and formamide abundances, which may point to a link between these two couples of species, in cold and warm gas

    Molecular ions in the protostellar shock L1157-B1

    Full text link
    We perform a complete census of molecular ions with an abundance larger than 1e-10 in the protostellar shock L1157-B1 by means of an unbiased high-sensitivity survey obtained with the IRAM-30m and Herschel/HIFI. By means of an LVG radiative transfer code the gas physical conditions and fractional abundances of molecular ions are derived. The latter are compared with estimates of steady-state abundances in the cloud and their evolution in the shock calculated with the chemical model Astrochem. We detect emission from HCO+, H13CO+, N2H+, HCS+, and, for the first time in a shock, from HOCO+, and SO+. The bulk of the emission peaks at blueshifted velocity, ~ 0.5-3 km/s with respect to systemic, has a width of ~ 4-8 km/s, and is associated with the outflow cavities (T_kin ~ 20-70 K, n(H2) ~ 1e5 cm-3). Observed HCO+ and N2H+ abundances are in agreement with steady-state abundances in the cloud and with their evolution in the compressed and heated gas in the shock for cosmic rays ionization rate Z = 3e-16 s-1. HOCO+, SO+, and HCS+ observed abundances, instead, are 1-2 orders of magnitude larger than predicted in the cloud; on the other hand they are strongly enhanced on timescales shorter than the shock age (~2000 years) if CO2, S or H2S, and OCS are sputtered off the dust grains in the shock. The performed analysis indicates that HCO+ and N2H+ are a fossil record of pre-shock gas in the outflow cavity, while HOCO+, SO+, and HCS+ are effective shock tracers and can be used to infer the amount of CO2 and sulphur-bearing species released from dust mantles in the shock. The observed HCS+ (and CS) abundance indicates that OCS should be one of the main sulphur carrier on grain mantles. However, the OCS abundance required to fit the observations is 1-2 orders of magnitude larger than observed. Further studies are required to fully understand the chemistry of sulphur-bearing species.Comment: 12 pages, 5 figures, accepted by A&

    The Foggy Disks Surrounding Herbig Ae Stars: a Theoretical Study of the H2O Line Spectra

    Full text link
    Water is a key species in many astrophysical environments, but it is particularly important in proto-planetary disks. So far,observations of water in these objects have been scarce, but the situation should soon change thanks to the Herschel satellite. We report here a theoretical study of the water line spectrum of a proto-planetary disk surrounding Ae stars. We show that several lines will be observable with the HIFI instrument onboard the Herschel Space Observatory. We predict that some maser lines could also be observable with ground telescopes and we discuss how the predictions depend not only on the adopted physical and chemical model but also on the set of collisional coefficients used and on the H2 ortho to para ratio through its effect on collisional excitation. This makes the water lines observations a powerful, but dangerous -if misused- diagnostic tool.Comment: Accepted for publication in ApJ Letter

    The solar type protostar IRAS16293-2422: new constraints on the physical structure

    Get PDF
    Context: The low mass protostar IRAS16293-2422 is a prototype Class 0 source with respect to the studies of the chemical structure during the initial phases of life of Solar type stars. Aims: In order to derive an accurate chemical structure, a precise determination of the source physical structure is required. The scope of the present work is the derivation of the structure of IRAS16293-2422. Methods: We have re-analyzed all available continuum data (single dish and interferometric, from millimeter to MIR) to derive accurate density and dust temperature profiles. Using ISO observations of water, we have also reconstructed the gas temperature profile. Results: Our analysis shows that the envelope surrounding IRAS16293-2422 is well described by the Shu "inside-out" collapsing envelope model or a single power-law density profile with index equal to 1.8. In contrast to some previous studies, our analysis does not show evidence of a large (>/- 800 AU in diameter) cavity. Conclusions: Although IRAS16293-2422 is a multiple system composed by two or three objects, our reconstruction will be useful to derive the chemical structure of the large cold envelope surrounding these objects and the warm component, treated here as a single source, from single-dish observations of molecular emission

    New quantum chemical computations of formamide deuteration support a gas-phase formation of this prebiotic molecule

    Full text link
    Based on recent work, formamide might be a potentially very important molecule in the emergence of terrestrial life. Although detected in the interstellar medium for decades, its formation route is still debated, whether in the gas phase or on the dust grain surfaces. Molecular deuteration has proven to be, in other cases, an efficient way to identify how a molecule is synthesised. For formamide, new published observations towards the IRAS16293-2422 B hot corino show that its three deuterated forms have all the same deuteration ratio, 2--5%, and that this is a factor 3--8 smaller than that measured for H2CO towards the IRAS16293-2422 protostar. Following a previous work on the gas-phase formamide formation via the reaction NH2 + H2CO -> HCONH2 + H, we present here new calculations of the rate coefficients for the production of monodeuterated formamide through the same reaction, starting from monodeuterated NH2 or H2CO. Some misconceptions regarding our previous treatment of the reaction are also cleared up. The results of the new computations show that, at the 100 K temperature of the hot corino, the rate of deuteration of the three forms is the same, within 20%. On the contrary, the reaction between non-deuterated species proceeds three times faster than that with deuterated ones. These results confirm that a gas-phase route for the formation of formamide is perfectly in agreement with the available observations.Comment: MNRAS in pres

    First measurements of 15N fractionation in N2H+ toward high-mass star forming cores

    Get PDF
    We report on the first measurements of the isotopic ratio 14N/15N in N2H+ toward a statistically significant sample of high-mass star forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180 up to ~1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N2H+ isotopologues are more than those detected in the CN ones. The 14N/15N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the 14N/15N (as derived from N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in 14N/15N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.Comment: 2 Figures, accepted for publication in ApJ

    Hyperentanglement witness

    Full text link
    A new criterium to detect the entanglement present in a {\it hyperentangled state}, based on the evaluation of an entanglement witness, is presented. We show how some witnesses recently introduced for graph states, measured by only two local settings, can be used in this case. We also define a new witness W3W_3 that improves the resistance to noise by increasing the number of local measurements.Comment: 6 pages, 2 figures, RevTex. v2: new title, minor changes in the explanation of the witness for hyperentangled states, more comments in the conclusions sectio
    • …
    corecore